Passive Optical LAN
A Game Changer for Enterprise Networks

Larry Johnson
Director & Founder

Presented by
The LIGHT BRIGADE
www.lightbrigade.com

What is a POLAN?

Passive Optical Local Area Network
POLAN’s Legacy

- Based on the International Telecommunications Union Standards (ITU-T) and used for fiber to the building designs.
 - G.984 Gigabit PON.
 - G.671 fiber optic passive components.
 - G.652 standard single-mode fiber.
- The IEEE 802.3ah standard uses most of the same baseline standards and their values.

What Makes POLAN Unique?

- Single-mode fibers.
 - High bandwidth.
- Bidirectional transmission.
 - Saves fibers.
- Optical splitters.
 - Allows sharing bandwidth.
- Standard performance levels.
- QoS, BER.
- Secure.
- Options for redundancy.
Additional Advantages

- Power is only required at hub sites and at end user’s locations (FTTD).
- Centrally located and managed.
 - Addresses easy adds, moves and changes.
- Distributed option based on application.
- Saves space in risers and cabling infrastructure.

FTTH Centralized Splitter Management

- Splitter in one location.
- Consolidates subscriber access to one location.
- Maximizes OLT card take rates.
- Design to handle maximum future density.
- Build as you grow.
Centralized Splitter in FTTB

- Indoor FDH.
- Optional FDH on the outside of the building.
- Splitters based on density.
- Patch panels on each floor.

FTTH Distributed Topology

- Splitters in multiple locations.
- Fiber management products.
- Distribution cable.
- Target to limited churn and high take rates.
- Limited flexibility.
Distributed Splitter in FTTB

- Splitters distributed.
 - Based on floors.
 - Based on density.
- Multiple options.
- Wall-mounted panels.

Services

- Triple play.
 - Voice.
 - VoIP, POTS.
 - Video.
 - IPTV, RF video.
 - Data.
 - All types.
- Applications.
 - Smart buildings.
 - Security.
 - Automation.
Optical LAN Outperforms LAN Evolution

March 25, 2014

Distance Limited –
MMF – 550m
Copper – 100m

Local Provisioning & Management

Building Aggregation
Communication Closet
End User

Building Aggregation

Optical LAN is Simple, Secure, Stable, Scalable, Sustainable and Saves Money!

Legacy Copper-based LAN
- Active Ethernet switches for LAN core, aggregation and access functions
- Cable infrastructure per service
 - CATx
 - Coax
 - Some Multi-mode Fiber (MMF)

Passive Optical LAN
- Passive Optical Network (PON)
 - Optical Line Terminal (OLT)
 - Passive optical distribution splitters
 - Optical Network terminations (ONT)
- Single mode fiber converges all building ICT services over single infrastructure

Centralized Provisioning & Management

Up to 30km/18mi Distance
300x Greater Reach

Legacy Copper-based LAN (2,000 End-points)

Optical LAN (8,000 End-points)

Optical LAN can offer 90% greater density compared to traditional copper-based LANs

Which architecture would you rather purchase, power & operate?

March 25, 2014
MDUs and MTUs

- Splitter topology.
 - Home run.
 - Centralized.
 - Distributed.
- Multiple dwelling unit.
 - Townhouses, apartments.
- Multiple tenant unit.
 - Business configuration.
- Four types.
 - High-rise.
 - Medium-rise.
 - Low-rise.
 - Horizontal.

FTTB/MDU Premises Installations

- Secured entrance site.
- Fiber management.
- Centralized cabling.
- G.657 bend-insensitive fiber.
- Customized FTTB products available.
- Preconnectorized options available.
FTTB Panels

- Wall mounted.
- Provides inbound splice capability.
- Routes drop cables to client’s ONTs.
- Provides transition point per NEC.
- Secured access.

FTTB Design Goals

- Density.
- Bandwidth requirements.
- Fiber access.
- Hub/splitter location.
- Fiber management.
FTTB MDU Existing Infrastructure

- Evaluate infrastructure and limitations.
 - Entrance facilities.
 - Risers, space.
 - Communication wiring.
 - Types.
 - Telecom/equipment rooms.
 - Power.
 - Building codes.
 - Building ownership.

- Design considerations.
 - Deployment philosophies.
 - Topology.

Backbone Hierarchical Star Topology

- Either one cable backbone or several.
- Design engineer must verify cable specifications.
- OFNR (NEC) or LSZH requirements.
- Structural engineer must verify open shaft use, floor penetrations, and support beams.
Did I Mention Space Savings?

Legacy Copper-based LAN
- CAT3
 - Voice only
 - Serving 120 end-points
 - Capacity in Kbps

CAT5e
- Data only
- Serving 120 end-points
- Capacity in Mbps

Optical LAN
- Single Mode Fiber
 - Voice, Data, Video & Other
 - Serves 128 with PON
 - Capacity measured in Tbps

Single mode fiber provides the best future-proof infrastructure today

Cable Structure and Fiber Counts

- Based on density.
 - Per floor.
 - Building total.

- Cables commonly based on counts of 6 or 12.

- Patch panel or FDH must accommodate total fiber count.
Passive Optical LAN

Get Cabling to Each User

- Existing risers and available space.
- Locations and routes.
- OFNR/OFNP/LSZH tight buffered distribution cables.
- Microduct cabling.
- Bend radius concerns (G.657).
- Slack storage.
- Multiple utility spaces available.
- MDU splitter terminal.
- Indoor drop cables (IDC).
- Stubbed pigtails.
- Fiber distribution terminal (FDT).
- Multifiber terminals (MFT).
- Physical protection.

OmniReach™ Solution

- Minimizes termination costs.
 - MPO ribbon terminations.
- Slack storage on panel.
- Up to 432 fibers.
- Various fiber management options.
- G.657 fiber and cable.
One Pass™ Solution

- Aesthetics.
- 1-12 fiber units.
- Transition hardware.
- Tooling.
- Passthrough.
- Hallways and inside.
- NPC and terminations.

Invisilight™ Solution

- 900-micron coated G.657 fibers.
- Aesthetic horizontal solution.
- Vertical integration.
- Fiber management products with slack storage.
- Multiple termination options using MPO, SC, or bare fiber.
End User Locations

- What is the density?
- How many floors?
- How many units per floor?
- Total units.
- Retail or business units on various floors. High bandwidth users.
- Possible MTU (businesses).
- Existing media, e.g., Cat5, coax.

FTTB Systems

- FTTB systems.
 - Active system.
 - Centralized PON.
 - Decentralized PON.
 - Interfaces with contracted services.
 - Solutions vary for indoor MDUs.
- Aesthetics.
 - Where visible, e.g., surface molding.
 - Residences.
 - MUTOA outlets.
Optical LAN networks serves a variety of different architectures:

- **A (A) Communications Closet or Zone Box or Work Group Switch or MDU**
 - Rack mounted in communications closets or zone boxes

- **B (B) Desktop**
 - Free-standing, above or below desk and/or wall mounted

- **C (C) In-wall or Cubicle**
 - In-wall using mud-ring or electrical gang box, or in-cubicle raceway

- **D (D) Outdoor**
 - Environmentally hardened ONT mounted outside building

- **E (E) Campus or Private LAN**
 - All the above architectures can be deployed simultaneously from single OLT

Desktop

- **ONT form factor and interfaces**
 - Small form factor with four GbE, option for two POTS, and RF video

- **ONT location / mounting**
 - Located right at end-user or IP/Ethernet device served
 - ONT can be free-standing, above or below desk and/or wall mounted

- **ONT service delivery**
 - Analog voice, VoIP, high-speed data, IP video and/or RF video
 - Wireless access, surveillance, security and building automation services

- **ONT powering**
 - Both local and remote powering options with battery backup
 - PoE+ with automated provisioning and energy savings management

- **OLT Location**
 - Rack mounted in the main data center or any building within 30km
Desktop

- ONT of choice when -
 - Fiber can be installed all the way to the IP/Ethernet end-point
 - Lowest CapEx solution assumes ONT sharing
 - Installation cost slightly higher compared to In-Wall deployment

- Typical uses are -
 - Dense cubicles and offices configurations
 - However, remember there are many mounting options other than just desktop
 - Specialized purposes such as PoE+, analog Voice and RF video

In-wall or Cubicle

- ONT form factor and interfaces
 - Mini form factor with two Gigabit Ethernet data interfaces (but with expansion option)

- ONT location / mounting
 - In-wall using mud-ring or electrical gang box, or in-cubicle raceway
 - Extension ring (bezel) available when electrical box depth is a concern

- ONT service delivery
 - VoIP, WAP, surveillance, security and building automation services
 - Future expansion for additional services such as POTS, WiFi, RF video

- ONT powering
 - Both local and remote powering options with battery backup
 - PoE with automated provisioning and energy savings management

- OLT Location
 - Rack mounted in the main data center or any building within 30km

*** Patent Pending ***
In-wall or Cubicle

- **ONT of choice when** -
 - Fiber can be installed all the way to the IP/Ethernet end-point
 - Eliminates cords, local power and local battery back-up clutter
 - Aesthetically pleasing with only flush faceplate exposed
 - Lowest installation cost
- **Typical uses are** -
 - Match today’s Ethernet LAN deployment practices
 - Up-scale buildings and executive offices
 - High security zones
 - Deploy with All-Secure PON solution
 - Areas where theft, vandalism, movement or damage is probable
 - Hotel rooms, college dorms, public common areas
 - As expansion modules are developed there will be less demand for desktop ONTs

- **Tellabs 120W mini ONT**
- **Tellabs 120C mini ONT**

Ethernet port goes into a “sleep” mode when no data is being sent
- **Low-power-idle (LPI) indication signal is sent for a specified time**
- **LPI is sent periodically to refresh the sleep mode**
- **When there is data to transmit a normal idle signal is sent to wake the transmit**

Outdoor

- **ONT form factor and interfaces**
 - 11”X11” ONT electronics and 13”x13” outside enclosure
- **ONT location / mounting**
 - Mounted outside building or inside telecommunications closet
- **ONT service delivery**
 - Analog voice, VoIP, high-speed data, IP video and/or RF video
 - Wireless access, surveillance, security, building automation services
- **ONT powering**
 - Local powering options with local battery backup
- **OLT same as before**
 - Rack mounted in main building where data center is located

- **Remote Buildings**
 - **Outdoor ONTs**
 - 1. Tellabs 702 ONT
 - 2. Tellabs 703 ONT
 - 3. Tellabs 714G ONT
Outdoor

- ONT of choice when -
 - Mounting outside
 - Harsh environments

- Typical uses are -
 - Remote buildings or warehouses
 - Security office such as remote guard office
 - Exterior corporate resources such as outdoor security, surveillance and WAP
 - Residential housing, military housing or student dormitory

Tellabs 714G ONT

Ontologies and Access Points

- Physical location (inside/outside).
- Electrical power.
- Protection.
- Aesthetics.
Aesthetics

- MDU/MTU subscriber.
 - Space is premium.
 - Aesthetics is personal for MDUs.
 - Aesthetics is professional for MTUs.
 - Power is required.
 - Access is to be scheduled.
 - Non disruptive to operations.
 - Backup power is optional.
 - Protection may be critical.

FTTB Premises

Considerations

- Cable installation requires cooperation between the building owners, network design engineer, structural engineer, and contractor.
- Codes must be followed.
- Older buildings may require upgrades.
- Telecom rooms.
 - Access for maintenance.
 - Power and protection.
 - Multimedia interface.
 - Aesthetics.
Proven fiber technology provides:
- Carrier class 99.9999% service.
 - Five minutes of downtime per year.
- With network 2:n physical and 1:1 network 99.9999%.
 - 30 seconds of downtime per year.
- Easy migration to G.987 10G-PON standard using same physical plant.

Insert AFL slide #3 here

Retitle POLAN advantages
Passive Optical LAN

What is Passive Optical LAN (POL or POLAN)?

- **Technical advantages.**
 - Flattens the local area network.
 - Simplifies moves, adds, changes.
 - More bandwidth/longer distances versus copper.
 - Secure by design (optical fiber and encryption).

- **Economic advantages.**
 - Reduces both CapEx and OpEx.
 - Eliminates wiring closets.
 - Less electronics, less power, less cooling.
 - Reduces pathway and space requirements.
 - Future proof.

Why Deploy POL?

Passive Optical LAN Advantages

![Passive Optical LAN Diagram](Courtesy AFL)

Passive Optical LAN

Question and Answer Session

Visit us in the registration area to pick up your FTTx wavelength allocation chart.

Presented by

The LIGHT BRIGADE

www.lightbrigade.com